



Name:

# Part 1

- 1. How could each community positively or negatively affect the water of Sharbot lake?
  - How might the economic activity of the village affect the health of Sharbot lake?
  - How might the presence of cottages around the lake affect the health of Sharbot lake?
  - How can the Provincial Park staff protect Sharbot lake?
  - How do you think uranium mines might have affected the health of Sharbot lake?
- 2. What are some things you notice about the graph on the other side of the page?
- 3. What's something you're wondering about the data you see?
- 4. What do you think the data may look like in 5 years? Why?



Student Handout for Science Literacy Week



Name:



### Extension activity:

- 1. Looking at the graph, do you notice any trends (i.e., change over time) in the data?
- 2. What factors may have affected the temperature of Sharbot Lake since 2001?





# Part 2

Grades 4-6: Looking at the tables on the other side of the page, calculate the following measures. (To simplify calculations, you can round table values to the nearest whole number.)

- 1. (GROUP 1) Calculate the MEAN of the data from 2001 to 2011.
- 2. (GROUP 2) Calculate the MEAN of the data from 2017 to 2018.
- 3. (GROUP 3) Calculate the MEAN of the data from 2019 to 2022.

Grades 6-8: Looking at the tables on the other side of the page, calculate the following measures.

- 1. (GROUP 1) Calculate the RANGE of the data from 2001 to 2011.
- 2. (GROUP 2) Calculate the RANGE of the data from 2017 to 2018.
- 3. (GROUP 3) Calculate the RANGE of the data from 2019 to 2022.



Name: \_\_\_\_\_



Extension activity:

- 1. Do you notice any outliers (data points that are very different from the others) in the tables? What may have caused them?
- 2. How would the mean change if we removed these outliers?
- 3. How would the range change if we removed these outliers?

Table 1: Water temperature 2001-2011

| Observation date | Water<br>temp. |
|------------------|----------------|
| 5/10/2001        | 16.2           |
| 5/17/2001        | 16.7           |
| 5/29/2001        | 17.0           |
| 8/22/2001        | 22.9           |
| 9/12/2001        | 21.0           |
| 6/1/2006         | 21.1           |
| 6/5/2006         | 21.8           |
| 8/25/2006        | 21.7           |
| 9/22/2006        | 17.1           |
| 10/27/2006       | 9.1            |
| 5/31/2011        | 21.8           |
| 8/4/2011         | 24.5           |
| 9/2/2011         | 21.9           |

| Table 2: Water |          |
|----------------|----------|
| temperature 20 | )17-2018 |
| Observation    | Water    |
| date           | temp.    |
| 4/28/2017      | 6.8      |
| 5/10/2017      | 8.9      |
| 5/22/2017      | 14.5     |
| 6/28/2017      | 20.6     |
| 7/19/2017      | 24.1     |
| 7/25/2017      | 21.3     |
| 8/17/2017      | 23.2     |
| 9/17/2017      | 22.0     |
| 9/20/2017      | 22.4     |
| 10/7/2017      | 17.9     |
| 5/23/2018      | 17.0     |
| 6/22/2018      | 22.1     |
| 7/27/2018      | 25.0     |
| 8/19/2018      | 24.6     |
| 9/27/2018      | 18.1     |

Table 3: Water temperature 2019-2022

| Observation date | Water<br>temp. |
|------------------|----------------|
| 5/24/2019        | 13.3           |
| 6/24/2019        | 21.6           |
| 7/24/2019        | 25.9           |
| 8/25/2019        | 22.6           |
| 9/24/2019        | 19.2           |
| 5/24/2020        | 16.0           |
| 6/26/2020        | 21.1           |
| 7/26/2020        | 26.2           |
| 8/31/2020        | 22.4           |
| 9/26/2020        | 17.5           |
| 5/24/2021        | 18.9           |
| 6/27/2021        | 19.8           |
| 7/23/2021        | 25.5           |
| 8/20/2021        | 27.3           |
| 9/17/2021        | 21.0           |
| 5/29/2022        | 19.1           |
| 6/25/2022        | 24.0           |
| 7/31/2022        | 24.5           |



Name:



Part 3



1. What do you see changing over time in the graph below?

2. What do you think the line is showing in the graph below?







- 3. What can you see happening at Sharbot lake from 2001 to 2022?
- 4. What do you think the consequences of this might be?

Extension activity:

- 1. What can we learn from the trend line in the graph above that we couldn't learn from the bars?
- 2. Given the trend line above, what water temperature would you expect to observe in 1995? In 2030?
- 3. How do you think outliers affect the trend line?





Name:

Part 4

- 1. In the graph below, when is the lowest recorded dissolved oxygen reading? When is the highest?
- 2. What do you think will happen by the 2030's? What is the lowest value that dissolved oxygen might reach? What might the consequences of this be for aquatic life?



- 1. In the graph on the other side of the page, how are water temperature and dissolved oxygen changing over time? Why do you think that might be?
- 2. What does the graph suggest about the relationship between water temperature and dissolved oxygen? Do you think one may influence the other?



## Student Handout for Science Literacy Week



Name:



#### Extension activity:



- 1. Based on the scatterplot, what is the highest value recorded for dissolved oxygen? What was the water temperature for this observation?
- 2. What is the highest value recorded for water temperature? What was the value of dissolved oxygen for this observation?
- 3. Based on the trend line (line of best fit), what dissolved oxygen value would you expect for a water temperature of 30 degrees celsius?
- 4. Based on the trend line (line of best fit), what water temperature would you expect for a dissolved oxygen value of 10 mg/L?
- 5. What kind of relationship might exist between water temperature and dissolved oxygen?





Name: \_\_\_\_\_

Part 5

1. Using the table below, make a bar graph using graph paper and a ruler. You need to choose what will go on the x and y axis, and to plot each bar correctly. Remember to label your x and y axis, and include a title. To make it easier, you can round table values to the nearest whole number.

Table 1: Water temperature - East basin - 2020-2022

| Observation<br>date | Water<br>temperature |
|---------------------|----------------------|
| 9/26/2020           | 17.4                 |
| 4/25/2021           | 8.6                  |
| 5/24/2021           | 19.9                 |
| 6/27/2021           | 20.9                 |
| 7/23/2021           | 25.8                 |
| 8/20/2021           | 27.2                 |
| 9/17/2021           | 20.7                 |
| 4/24/2022           | 7.3                  |
| 6/24/2022           | 24                   |
| 7/30/2022           | 24.5                 |





<u>Extension activity</u>: Using the table of temperatures below, make a **histogram** of water temperature at Sharbot Lake (West basin) from 2019 to 2022. This means you need to set an appropriate number of intervals, make a frequency distribution table using these intervals, then make a graph with the intervals on the x axis and frequency on the y axis. Don't forget to label your axes!

#### Table 2: Water temperature 2019-2022

| Observation<br>date | Water<br>temperature |
|---------------------|----------------------|
| 5/24/2019           | 13.3                 |
| 6/24/2019           | 21.6                 |
| 7/24/2019           | 25.9                 |
| 8/25/2019           | 22.6                 |
| 9/24/2019           | 19.2                 |
| 5/24/2020           | 16.0                 |
| 6/26/2020           | 21.1                 |
| 7/26/2020           | 26.2                 |
| 8/31/2020           | 22.4                 |
| 9/26/2020           | 17.5                 |
| 5/24/2021           | 18.9                 |
| 6/27/2021           | 19.8                 |
| 7/23/2021           | 25.5                 |
| 8/20/2021           | 27.3                 |
| 9/17/2021           | 21.0                 |
| 5/29/2022           | 19.1                 |
| 6/25/2022           | 24.0                 |
| 7/31/2022           | 24.5                 |

To give you an example, here is a histogram made with observations of **dissolved oxygen**:

Table 3: Frequency distribution table - Dissolved oxygen 2001-2022

| 4-5.99   | 1  |
|----------|----|
| 6-7.99   | 13 |
| 8-9.99   | 27 |
| 10-11.99 | 3  |
| 12-13.99 | 1  |

